Lucanthone and Its Derivative Hycanthone Inhibit Apurinic Endonuclease-1 (APE1) by Direct Protein Binding

نویسندگان

  • Mamta D. Naidu
  • Rakhi Agarwal
  • Louis A. Pena
  • Luis Cunha
  • Mihaly Mezei
  • Min Shen
  • David M. Wilson
  • Yuan Liu
  • Zina Sanchez
  • Pankaj Chaudhary
  • Samuel H. Wilson
  • Michael J. Waring
چکیده

Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1, without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC(50) values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 µM and 80 nM, respectively. The K(D) values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased (Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced degradation was drastically reduced in the presence of short and long lived free radical scavengers, e.g., TRIS and DMSO, suggesting that the mechanism of APE1 breakdown may involve free radical-induced peptide bond cleavage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone.

Cells repair DNA damage via four main mechanisms, however, damage induced by alkylators and oxidative damage is predominantly repaired by the DNA base excision repair (BER) pathway. The AP endonuclease, APE1, is one of the main enzymes in the BER pathway. It is abundant in human cells and accounts for nearly all of the abasic site cleavage activity observed in cellular extracts. APE1 expression...

متن کامل

Rapid dissociation of human apurinic endonuclease (Ape1) from incised DNA induced by magnesium.

Repair of apurinic/apyrimidinic (AP) sites is initiated by AP endonucleases, such as the human Ape1 protein (also called Hap1, Apex, and Ref1). This and related enzymes show strong dependence on divalent cations, particularly magnesium. Here we explore the role of this metal in different stages of the Ape1 reaction: substrate binding, cleavage, and product release. We examined DNA binding using...

متن کامل

Altered Endoribonuclease Activity of Apurinic/Apyrimidinic Endonuclease 1 Variants Identified in the Human Population

Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in the DNA base excision repair pathway and cleaves the DNA phosphodiester backbone immediately 5' to abasic sites. APE1 also has 3'-5' DNA exonuclease and 3' DNA phosphodiesterase activities, and regulates transcription factor DNA binding through its redox regulatory function. The human APE1 has recently been shown to en...

متن کامل

Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity

Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites in vitro has been extensively investigated, it is large...

متن کامل

Efficient inhibition of human AP endonuclease 1 (APE1) via substrate masking by abasic site-binding macrocyclic ligands.

Bis-naphthalene macrocycles, which bind with high affinity and selectivity to abasic sites in DNA, efficiently inhibit their cleavage by APE1 (IC50 = 55-60 nM in the kinetic assay with a model THF substrate). These results demonstrate that substrate masking by non-covalent abasic-site ligands is an efficient strategy for inhibition of APE1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011